Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607011

RESUMO

Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) have been recognized as important mediators in migraine but their mechanisms of action and interaction have not been fully elucidated. Monoclonal anti-CGRP antibodies like fremanezumab are successful preventives of frequent migraine and can be used to study CGRP actions in preclinical experiments. Fremanezumab (30 mg/kg) or an isotype control monoclonal antibody was subcutaneously injected to Wistar rats of both sexes. One to several days later, glyceroltrinitrate (GTN, 5 mg/kg) mimicking nitric oxide (NO) was intraperitoneally injected, either once or for three consecutive days. The trigeminal ganglia were removed to determine the concentration of CGRP using an enzyme-linked immunosorbent assay (ELISA). In one series of experiments, the animals were trained to reach an attractive sugar solution, the access to which could be limited by mechanical or thermal barriers. Using a semi-automated registration system, the frequency of approaches to the source, the residence time at the source, and the consumed solution were registered. The results were compared with previous data of rats not treated with GTN. The CGRP concentration in the trigeminal ganglia was generally higher in male rats and tended to be increased in animals treated once with GTN, whereas the CGRP concentration decreased after repetitive GTN treatment. No significant difference in CGRP concentration was observed between animals having received fremanezumab or the control antibody. Animals treated with GTN generally spent less time at the source and consumed less sugar solution. Without barriers, there was no significant difference between animals having received fremanezumab or the control antibody. Under mechanical barrier conditions, all behavioral parameters tended to be reduced but animals that had received fremanezumab tended to be more active, partly compensating for the depressive effect of GTN. In conclusion, GTN treatment seems to increase the production of CGRP in the trigeminal ganglion independently of the antibodies applied, but repetitive GTN administration may deplete CGRP stores. GTN treatment generally tends to suppress the animals' activity and increase facial sensitivity, which is partly compensated by fremanezumab through reduced CGRP signaling. If CGRP and NO signaling share the same pathway in sensitizing trigeminal afferents, GTN and NO may act downstream of CGRP to increase facial sensitivity.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Feminino , Ratos , Masculino , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Glicerol , Ratos Wistar , Roedores/metabolismo , Óxido Nítrico , Nociceptividade , Nitroglicerina/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Açúcares
2.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686275

RESUMO

Treatment with the anti-CGRP antibody fremanezumab is successful in the prevention of chronic and frequent episodic migraine. In preclinical rat experiments, fremanezumab has been shown to reduce calcitonin gene-related peptide (CGRP) release from trigeminal tissues and aversive behaviour to noxious facial stimuli, which are characteristic pathophysiological changes accompanying severe primary headaches. To further decipher the effects of fremanezumab that underlie these antinociceptive effects in rats, immunohistochemistry and ELISA techniques were used to analyse the content and concentration of CGRP in the trigeminal ganglion, as well as the ratio of trigeminal ganglion neurons which are immunoreactive to CGRP and CGRP receptor components, 1-10 days after subcutaneous injection of fremanezumab (30 mg/kg) compared to an isotype control antibody. After fremanezumab treatment, the fraction of trigeminal ganglion neurons which were immunoreactive to CGRP and the CGRP receptor components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) was significantly lowered compared to the control. The content and concentration of CGRP in trigeminal ganglia were not significantly changed. A long-lasting reduction in CGRP receptors expressed in trigeminal afferents may contribute to the attenuation of CGRP signalling and antinociceptive effects of monoclonal anti-CGRP antibodies in rats.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Animais , Ratos , Anticorpos Monoclonais/farmacologia , Neurônios , Analgésicos
3.
J Pharmacol Exp Ther ; 387(1): 4-14, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164371

RESUMO

Irritable bowel syndrome (IBS) and bladder pain syndrome/interstitial cystitis (BPS/IC) are comorbid visceral pain disorders seen commonly in women with unknown etiology and limited treatment options and can involve visceral organ cross-sensitization. Calcitonin gene-related peptide (CGRP) is a mediator of nociceptive processing and may serve as a target for therapy. In three rodent models, we employed a monoclonal anti-CGRP F(ab')2 to investigate the hypothesis that visceral organ cross-sensitization is mediated by abnormal CGRP signaling. Visceral organ cross-sensitization was induced in adult female rats via transurethral infusion of protamine sulfate (PS) into the urinary bladder or infusion into the colon of trinitrobenzene sulfonic acid (TNBS). Colonic sensitivity was assessed via the visceromotor response to colorectal distension (CRD). Bladder sensitivity was assessed as the frequency of abdominal withdrawal reflexes to von Frey filaments applied to the suprapubic region. PS- or TNBS-induced changes in colonic and bladder permeability were investigated in vitro via quantification of transepithelial electrical resistance (TEER). Peripheral administration of an anti-CGRP F(ab')2 inhibited PS-induced visceral pain behaviors and colon hyperpermeability. Similarly, TNBS-induced pain behaviors and colon and bladder hyperpermeability were attenuated by anti-CGRP F(ab')2 treatment. PS into the bladder or TNBS into the colon significantly increased the visceromotor response to CRD and abdominal withdrawal reflexes to suprapubic stimulation and decreased bladder and colon TEER. These findings suggest an important role of peripheral CGRP in visceral nociception and organ cross-sensitization and support the evaluation of CGRP as a therapeutic target for visceral pain in patients with IBS and/or BPS/IC. SIGNIFICANCE STATEMENT: A monoclonal antibody against calcitonin gene-related peptide (CGRP) was found to reduce concomitant colonic and bladder hypersensitivity and hyperpermeability. The results of this study suggest that CGRP-targeting antibodies, in addition to migraine prevention, may provide a novel treatment strategy for multiorgan abdominopelvic pain following injury or inflammation.


Assuntos
Síndrome do Intestino Irritável , Dor Visceral , Ratos , Feminino , Animais , Bexiga Urinária , Peptídeo Relacionado com Gene de Calcitonina , Síndrome do Intestino Irritável/tratamento farmacológico , Dor Visceral/tratamento farmacológico , Ratos Sprague-Dawley , Colo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Modelos Animais de Doenças
4.
Neurol Int ; 15(2): 622-637, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37218978

RESUMO

Migraine pain is frequently accompanied by cranial hyperalgesia and allodynia. Calcitonin gene-related peptide (CGRP) is implicated in migraine pathophysiology but its role in facial hypersensitivity is not entirely clear. In this study, we investigated if the anti-CGRP monoclonal antibody fremanezumab, which is therapeutically used in chronic and episodic migraines, can modify facial sensitivity recorded by a semi-automatic system. Rats of both sexes primed to drink from a sweet source had to pass a noxious mechanical or heat barrier to reach the source. Under these experimental conditions, animals of all groups tended to drink longer and more when they had received a subcutaneous injection of 30 mg/kg fremanezumab compared to control animals injected with an isotype control antibody 12-13 days prior to testing, but this was significant only for females. In conclusion, anti-CGRP antibody, fremanezumab, reduces facial sensitivity to noxious mechanical and thermal stimulation for more than one week, especially in female rats. Anti-CGRP antibodies may reduce not only headache but also cranial sensitivity in migraineurs.

5.
Front Physiol ; 13: 1067274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523559

RESUMO

Calcitonin gene-related peptide (CGRP) pathway-targeted treatments have been shown to be efficacious in the prevention of episodic and chronic migraine. Currently approved therapies include monoclonal antibodies (mAbs) that target CGRP (eptinezumab, fremanezumab, and galcanezumab) and the CGRP receptor (erenumab), and small molecule CGRP receptor antagonists (atogepant and rimegepant). While CGRP pathway-targeted treatments are generally well-tolerated, in a review article by Holzer and Holzer-Petsche published in the January 2022 issue of Frontiers in Physiology the authors discussed the role of the CGRP pathway in gastrointestinal physiology, with a specific focus on constipation associated with the use of CGRP pathway-targeted treatments. The authors state that real-world surveys have shown constipation to be a "major adverse event" reported in "more than 50% of patients treated with erenumab, fremanezumab or galcanezumab." As described in the current commentary, the limited data from the cited references in the review article by Holzer and Holzer-Petsche do not support that statement.

6.
Cells ; 11(11)2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35681463

RESUMO

Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) belong to a new generation of therapeutics that are effective in the prevention of migraine. CGRP, a potent vasodilator, is strongly implicated in the pathophysiology of migraine, but its role remains to be fully elucidated. The hemisected rat head preparation and laser Doppler flowmetry were used to examine the effects on CGRP release from the dura mater and meningeal blood flow of the subcutaneously injected anti-CGRP monoclonal antibody fremanezumab at 30 mg/kg, when compared to an isotype control antibody. Some rats were administered glycerol trinitrate (GTN) intraperitoneally to produce a migraine-like sensitized state. When compared to the control antibody, the fremanezumab injection was followed by reduced basal and capsaicin-evoked CGRP release from day 3 up to 30 days. The difference was enhanced after 4 h of GTN application. The samples from the female rats showed a higher CGRP release compared to that of the males. The increases in meningeal blood flow induced by acrolein (100 µM) and capsaicin (100 nM) were reduced 13-20 days after the fremanezumab injection, and the direct vasoconstrictor effect of high capsaicin (10 µM) was intensified. In conclusion, fremanezumab lowers the CGRP release and lasts up to four weeks, thereby lowering the CGRP-dependent meningeal blood flow. The antibody may not only prevent the released CGRP from binding but may also influence the CGRP release stimulated by noxious agents relevant for the generation of migraine pain.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Capsaicina/farmacologia , Dura-Máter/irrigação sanguínea , Dura-Máter/metabolismo , Feminino , Masculino , Ratos
8.
Cephalalgia ; 41(5): 499-514, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626922

RESUMO

BACKGROUND: The clinical efficacy of migraine therapeutic agents directed towards the calcitonin-gene related peptide (CGRP) pathway has confirmed the key role of this axis in migraine pathogenesis. Three antibodies against CGRP - fremanezumab, galcanezumab and eptinezumab - and one antibody against the CGRP receptor, erenumab, are clinically approved therapeutics for the prevention of migraine. In addition, two small molecule CGRP receptor antagonists, ubrogepant and rimegepant, are approved for acute migraine treatment. Targeting either the CGRP ligand or receptor is efficacious for migraine treatment; however, a comparison of the mechanism of action of these therapeutic agents is lacking in the literature. METHODS: To gain insights into the potential differences between these CGRP pathway therapeutics, we compared the effect of a CGRP ligand antibody (fremanezumab), a CGRP receptor antibody (erenumab) and a CGRP receptor small molecule antagonist (telcagepant) using a combination of binding, functional and imaging assays. RESULTS: Erenumab and telcagepant antagonized CGRP, adrenomedullin and intermedin cAMP signaling at the canonical human CGRP receptor. In contrast, fremanezumab only antagonized CGRP-induced cAMP signaling at the human CGRP receptor. In addition, erenumab, but not fremanezumab, bound and internalized at the canonical human CGRP receptor. Interestingly, erenumab also bound and internalized at the human AMY1 receptor, a CGRP receptor family member. Both erenumab and telcagepant antagonized amylin-induced cAMP signaling at the AMY1 receptor while fremanezumab did not affect amylin responses. CONCLUSION: The therapeutic effect of agents targeting the CGRP ligand versus receptor for migraine prevention (antibodies) or acute treatment (gepants) may involve distinct mechanisms of action. These findings suggest that differing mechanisms could affect efficacy, safety, and/or tolerability in migraine patients.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Peptídeo Relacionado com Gene de Calcitonina/imunologia , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/prevenção & controle , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Azepinas/uso terapêutico , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/administração & dosagem , Humanos , Imidazóis/uso terapêutico , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Receptores de Peptídeo Relacionado com o Gene de Calcitonina
9.
Cell Signal ; 35: 176-187, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28259758

RESUMO

Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1-/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas de Transporte Vesicular/genética , Animais , Endocitose/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Transportadores de Ânions Orgânicos/genética , Mapas de Interação de Proteínas/genética , Transporte Proteico/genética , Proteômica , Ratos , Proteínas de Transporte Vesicular/metabolismo
10.
J Neurochem ; 138(5): 710-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27315547

RESUMO

Huntingtin-associated protein-1 (HAP1) is involved in intracellular trafficking, vesicle transport, and membrane receptor endocytosis. However, despite such diverse functions, the role of HAP1 in the synaptic vesicle (SV) cycle in nerve terminals remains unclear. Here, we report that HAP1 functions in SV exocytosis, controls total SV turnover and the speed of vesicle fusion in nerve terminals and regulates glutamate release in cortical brain slices. We found that HAP1 interacts with synapsin I, an abundant neuronal phosphoprotein that associates with SVs during neurotransmitter release and regulates synaptic plasticity and neuronal development. The interaction between HAP1 with synapsin I was confirmed by reciprocal co-immunoprecipitation of the endogenous proteins. Furthermore, HAP1 co-localizes with synapsin I in cortical neurons as discrete puncta. Interestingly, we find that synapsin I localization is specifically altered in Hap1(-/-) cortical neurons without an effect on the localization of other SV proteins. This effect on synapsin I localization was not because of changes in the levels of synapsin I or its phosphorylation status in Hap1(-/-) brains. Furthermore, fluorescence recovery after photobleaching in transfected neurons expressing enhanced green fluorescent protein-synapsin Ia demonstrates that loss of HAP1 protein inhibits synapsin I transport. Thus, we demonstrate that HAP1 regulates SV exocytosis and may do so through binding to synapsin I. The Proposed mechanism of synapsin I transport mediated by HAP1 in neurons. HAP1 interacts with synapsin I, regulating the trafficking of synapsin I containing vesicles and/or transport packets, possibly through its engagement of microtubule motors. The absence of HAP1 reduces synapsin I transport and neuronal exocytosis. These findings provide insights into the processes of neuronal trafficking and synaptic signaling.


Assuntos
Exocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Movimento Celular/fisiologia , Endocitose/fisiologia , Fusão de Membrana/fisiologia , Camundongos , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Transmissão Sináptica/fisiologia
11.
J Physiol ; 592(7): 1505-18, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24366265

RESUMO

Huntingtin-associated protein 1 (HAP1) was initially established as a neuronal binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking and cell signalling. In this study, we establish that HAP1 is important in several steps of exocytosis in adrenal chromaffin cells. Using carbon-fibre amperometry, we measured single vesicle exocytosis in chromaffin cells obtained from HAP1(-/-) and HAP1(+/+) littermate mice. Numbers of Ca(2+)-dependent and Ca(2+)-independent full fusion events in HAP1(-/-) cells are significantly decreased compared with those in HAP1(+/+) cells. We observed no change in the frequency of 'kiss-and-run' fusion events or in Ca(2+) entry. Whereas release per full fusion event is unchanged in HAP1(-/-) cells, early fusion pore duration is prolonged, as indicated by the increased duration of pre-spike foot signals. Kiss-and-run events have a shorter duration, indicating opposing roles for HAP1 in the stabilization of the fusion pore during full fusion and transient fusion, respectively. We use electron microscopy to demonstrate a reduction in the number of vesicles docked at the plasma membrane of HAP1(-/-) cells, where membrane capacitance measurements reveal the readily releasable pool of vesicles to be reduced in size. Our study therefore illustrates that HAP1 regulates exocytosis by influencing the morphological docking of vesicles at the plasma membrane, the ability of vesicles to be released rapidly upon stimulation, and the early stages of fusion pore formation.


Assuntos
Medula Suprarrenal/metabolismo , Membrana Celular/metabolismo , Células Cromafins/metabolismo , Exocitose , Fusão de Membrana , Proteínas do Tecido Nervoso/metabolismo , Vesículas Secretórias/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Catecolaminas/metabolismo , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Via Secretória , Fatores de Tempo
12.
J Neurochem ; 124(3): 290-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23134420

RESUMO

We have previously shown that Regulator of Calcineurin 1 (RCAN1) regulates multiple stages of vesicle exocytosis. However, the mechanisms by which RCAN1 affects secretory vesicle exocytosis and quantal release kinetics remain unknown. Here, we use carbon fibre amperometry to detect exocytosis from chromaffin cells and identify these underlying mechanisms. We observe reduced exocytosis with repeated stimulations in chromaffin cells over-expressing RCAN1 (RCAN1(ox)), but not in wild-type (WT) cells, indicating a negative effect of RCAN1 on vesicle recycling and endocytosis. Acute exposure to calcineurin inhibitors, cyclosporine A and FK-506, replicates this effect in WT cells but has no additional effect in RCAN1(ox) cells. When we chronically expose WT cells to cyclosporine A and FK-506 we find that catecholamine release per vesicle and pre-spike foot (PSF) signal parameters are decreased, similar to that in RCAN1(ox) cells. Inhibiting calcineurin activity in RCAN1(ox) cells has no additional effect on the amount of catecholamine release per vesicle but further reduces PSF signal parameters. Although electron microscopy studies indicate these changes are not because of altered vesicle number or distribution in RCAN1(ox) cells, the smaller vesicle and dense core size we observe in RCAN1(ox) cells may underlie the reduced quantal release in these cells. Thus, our results indicate that RCAN1 most likely affects vesicle recycling and quantal release kinetics via the inhibition of calcineurin activity.


Assuntos
Calcineurina/metabolismo , Calcineurina/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Musculares/fisiologia , Vesículas Secretórias/metabolismo , Animais , Inibidores de Calcineurina , Proteínas de Ligação ao Cálcio , Células Cultivadas , Células Cromafins/citologia , Células Cromafins/metabolismo , Células Cromafins/fisiologia , Endocitose/fisiologia , Feminino , Cinética , Masculino , Camundongos , Camundongos Mutantes , Teoria Quântica , Vesículas Secretórias/fisiologia
13.
Endocrinology ; 153(11): 5212-21, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23011918

RESUMO

RCAN1 is a chromosome 21 gene that controls secretion in endocrine cells, regulates mitochondrial function, and is sensitive to oxidative stress. Regulator of calcineurin 1 (RCAN1) is also an endogenous inhibitor of the protein phosphatase calcineurin, the inhibition of which leads to hypoinsulinemia and diabetes in humans and mice. However, the presence or the role of RCAN1 in insulin-secreting ß-cells and its potential role in the pathogenesis of diabetes is unknown. Hence, the aim of this study is to investigate the presence of RCAN1 in ß-cells and identify its role in ß-cell function. RCAN1 is expressed in mouse islets and in the cytosol of pancreatic ß-cells. We find RCAN1 is a glucose-responsive gene with a 1.5-fold increase in expression observed in pancreatic islets in response to chronic hyperglycemia. The overexpression of the human RCAN1.1 isoform in mice under the regulation of its endogenous promoter causes diabetes, age-associated hyperglycemia, reduced glucose tolerance, hypoinsulinemia, loss of ß-cells, reduced ß-cell insulin secretion, aberrant mitochondrial reactive oxygen species production, and the down-regulation of key ß-cell genes. Our data therefore identifies a novel molecular link between the overexpression of RCAN1 and ß-cell dysfunction. The glucose-responsive nature of RCAN1 provides a potential mechanism of action associated with the ß-cell dysfunction observed in diabetes.


Assuntos
Diabetes Mellitus/metabolismo , Intolerância à Glucose/metabolismo , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Intolerância à Glucose/genética , Intolerância à Glucose/patologia , Hiperglicemia/genética , Hiperglicemia/patologia , Secreção de Insulina , Células Secretoras de Insulina/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Musculares/genética , Espécies Reativas de Oxigênio/metabolismo
14.
PLoS One ; 6(11): e27820, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22125627

RESUMO

How fusion pore formation during exocytosis affects the subsequent release of vesicle contents remains incompletely understood. It is unclear if the amount released per vesicle is dependent upon the nature of the developing fusion pore and whether full fusion and transient kiss and run exocytosis are regulated by similar mechanisms. We hypothesise that if consistent relationships exist between these aspects of exocytosis then they will remain constant across any age. Using amperometry in mouse chromaffin cells we measured catecholamine efflux during single exocytotic events at P0, 1 month and 6 months. At all ages we observed full fusion (amperometric spike only), full fusion preceded by fusion pore flickering (pre-spike foot (PSF) signal followed by a spike) and pure "kiss and run" exocytosis (represented by stand alone foot (SAF) signals). We observe age-associated increases in the size of all 3 modes of fusion but these increases occur at different ages. The release probability of PSF signals or full spikes alone doesn't alter across any age in comparison with an age-dependent increase in the incidence of "kiss and run" type events. However, the most striking changes we observe are age-associated changes in the relationship between vesicle size and the membrane bending energy required for exocytosis. Our data illustrates that vesicle size does not regulate release probability, as has been suggested, that membrane elasticity or flexural rigidity change with age and that the mechanisms controlling full fusion may differ from those controlling "kiss and run" fusion.


Assuntos
Envelhecimento/fisiologia , Células Cromafins/fisiologia , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Animais , Cálcio/metabolismo , Catecolaminas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Células Cultivadas , Células Cromafins/metabolismo , Técnicas Eletroquímicas/métodos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...